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Standard methods for solving the Hartree-Fock equations for excited states often 
fail to converge or oscillate about the solution. Two new methods with improved 
stability properties are proposed which require only one computation of the exchange 
function per SCF iteration. These methods have solved satisfactorily all the cases found 
to be unstable by Griffin, Cowan and Andrew [l] as well as other test cases. 

I. INTR~DUCTI~N 

Recently Griffin, Cowan and Andrew [I] performed extensive studies of 
instabilities in the iterative solution of the Hartree-Fock (HF) equations for 
excited configurations in atoms. They define a configuration to be unstable if, 
when using solutions of the Hartree-plus-statistical-exchange (HX) equations [2] 
as initial estimates, a “standard” method for solving the radial equation leads to a 
self-consistent field iteration which fails to converge. Some examples are K 4d, 
Ca 4s4d, SC 4s24d, Ti 3d24s4d and 3d24s5d [3]. For the last case, even with an 
input 5d radial function self-consistent to lo-‘, the standard method slowly 
diverged. Griffin et al. analyzed the reasons for instabilities, classified solutions 
as being of three types and devised two new methods for finding solutions 
in these cases. Their methods have been successful in solving HF equations 
for such complex cases as Pt 6s5d86f but at the expense of vast amounts of 
computer time. In this paper two new but simple methods are suggested 
which, when used as the “standard” method, would greatly reduce the class of 
unstable configurations. In particular, all the configurations mentioned above 
(with the exception of Pt 6s5ds6f which was not tried) converged satisfactorily 
using screened hydrogenic functions as initial estimates. Such estimates are not 
nearly as accurate as the HX solutions used by Griffin et al. [I]. 
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IT. THE NATURE OF THE PROBLEM 

The HF equations for atoms are a system of coupled, integrodifferential 
equations of the form 

= f -G(r) + C azizj cii Pi(r), i = l,..., n 
j#i 

which satisfy 

(1) 

(i) boundary conditions: P,(O) = P,(co) = 0, 

(ii) normalization conditions: 11 Pi 11 = {j Pi”(r) dr}1/2 = 1, 

(iii) orthogonality conditions between functions with the same angular 
quantum number: (Pi , Pj) = s P,(r) Pi(r) dr = 0 for li = Zi, i # j. 

Here a,,, is the Kronecker delta function and, for a single configuration approxi- 
mation,l 

Yi(r) = 1 aiilc Y”(jj; r) 
j.k 

and 

X,(r) = 1 biik Y”(zj; r) Pj(r), 
j#i 

where 

Y”(ub; r) = ST P,(t) (s)” Pa(t) dt + jrn P,(t) (f)‘+’ P,(t)dt. 
0 7 

Quantum numbers nili are associated with each radial function Pi(r). The angular 
quantum number Ii appears explicitly in the equations; the principal quantum 
number ni , however, influences the solution only indirectly in that the number 
of nodes in the solution, excluding minor oscillations in the tail region as well as 
the node at the origin, should be ni - li - 1. Furthermore, by convention, the 
functions are defined to be positive near the origin. The latter requirement can 
always be satisfied since, if Pi(r) is a solution, then -P,(r) is also a solution with 
cij replaced by -eij . Auxiliary conditions then are 

(iv) Number of nodes-ni - Zi - 1. 
(v) The initial “slope,” a, = P,(r)/r”i+l > 0, r + 0. 

1 For simplicity, the discussion will be restricted to the single-configuration approximation 
but the arguments can be extended to the multiconfiguration approximation as well. 
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Because of the nonlinear nature of these equations, they are solved iteratively 
by a procedure called the self-consistent field (SCF) method. In this procedure, 
estimates of the radial functions are used to compute estimates of Eii , j # i [4], 
and the functions 

fCr) = (2/r)(Z - Yi(r)) - Z(li + l)lr2, 

and 

Then the solution of the differential equation 

W2/dr2) + f(r) - 4 y(r) = g(r) (2) 

satisfying conditions (i), (ii), (iv) and (v) (all except orthogonality) is used 
to form a new estimate. Let Pjk) be the k-th estimate of Pi(r) and y@) the 
solution of the above boundary-value problem associated with that estimate. 
In the simplest SCF iteration 

p!k+l) 
1 

1 y(k), 

but this often causes oscillations which slow the rate of convergence or even result 
in divergence. A common technique for minimizing this problem is the introduction 
of accelerating parameters c and the use of 

P!k+l) = cpy + (1 - c)p, z 

(normalized) as the next estimate. This procedure has the effect of damping out 
oscillations when 0 < c < 1. 

The boundary-value problem as given by Eq. (2) is solved repetitively for all i, 
in some order, until all solutions are consistent with the current estimate of the 
corresponding radial function. The nature of this boundary value problem plays 
a key role in the convergence of the SCF iteration. 

For a homogeneous equation where g(r) = 0, the diagonal energy parameter E, 
is an eigenvalue of the differential equation and a normalized solution satisfying 
the boundary values exists only for certain discrete values, say l . When g(r) + 0 
a solution can be found for any E # E K Only for certain values, however, will 
constraints (i), (ii), (iv) and (v) be satisfied. A solution of the differential equation 
satisfying the boundary conditions (i) and the auxiliary constraints (iv) and (v) 
will be called on “acceptable solution”; when (ii) is also satisfied it will be referred 
to as a “normalized acceptable solution.” 
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Hartree [5] described two methods for finding normalized acceptable solutions. 
Both involve iterative adjustment of the energy parameter E and an adjustment of 
the initial slope a, , but they differ in the way in which the iteration is performed. 
His methods in somewhat modified form are the basis of nearly all commonly 
used computer programs [6-91. 

Inherent in both his methods is the assumption that the normalized acceptable 
solution is unique. It is well known that the solutions to the HF equations are not 
unique for certain states. Configurations with complete groups only or some excited 
states such as ls2s3S are examples. In these cases a unitary transformation of 
radial functions with the same angular quantum numbers will also be a solution 
of the HF equations but with diagonal and off-diagonal energy parameters 
transformed. Koopmans [lo] showed that in such cases, solutions for which 
the off-diagonal energy parameters are zero have the property that their diagonal 
energy parameter is related to the ionization potential. With this convention, 
the solutions of the HF equations satisfying all the constraints are unique [l I]. 

The situation with respect to the intermediate boundary-value problem is quite 
different. The orthogonality condition is not part of the problem and, as shown 
by Mjolness and Ruppel [ll], zero, one or two acceptable solutions may exist. 
This situation is clearly presented in the work of Griffin et al., but they did not 
consider the role of off-diagonal energy parameters (or orthogonality). 

Griffin et al. propose two new methods for solving the boundary-value problem 
both of which use a self-consistency criterion. In this way, their procedure can 
choose between two normalized acceptable solutions. They noted that instabilities 
tended to occur when there was a single electron in an orbital. In such cases, the 
functionf(r) is not directly dependent on the orbital in question, only g(r). Their 
methods can be described briefly as follows. For a particular value of E, a solution 
of the boundary-value problem is obtained which, in general, is not normalized 
and is called a first-generation integral. This function is normalized and 
used in the recomputation of g(r). The differential equation with the same 
f(r) but the new g(r) is solved again, this time for a second-generation integral. 
The two methods differ in their requirements on the second-generation integral. 
This process is repeated for a series of E values always using the same exchange 
function g(r), for the first-generation integral but different ones for the second- 
generation integrals. Finally that solution is accepted for which the first- and 
second-generation solutions are most nearly self-consistent. As is evident, such an 
algorithm, which requires that the exchange function be recomputed many times, 
can consume vast amounts of computer time. For large atoms, the computation 
of the exchange term is far more time consuming than the integration of the 
differential equation. The exchange term for Ti 3d24s4d has eleven Yck) integrals, 
each of which is about as time consuming as the integration of a differential 
equation, and this is still a relatively small atom. 
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III. NEW METHODS OF SOLUTION 

One difficulty with the standard methods is their reliance upon normalized 
solutions of the boundary-value problem. If no normalized acceptable solution 
exists, an iterative procedure will obviously fail to converge; if two solutions exist 
the iterations may oscillate between them. 

At this stage it is enlightening to consider the HF equations in terms of un- 
normalized function. Let 

Yi(r) = C aijk Y”(ij; r>/ll Pj II’, 
j,k 

&k> = c biik yk(g; r> Pdr))/li pi /12. 
i,k 

Also replace +Pj(r) by e,,P,(r)/lj Pj ]I2 and note that 

Eij = 1,” Pi(r) [ I$- + i (2 - Y,(r)) - li(“: “1 P,(r) - t Xi(r)] dr. 

In this form it is evident that the HF equation is homogeneous of degree one and 
so normalization is an arbitrary process. It is, therefore, not necessary to insist 
that the approximate solutions should be normalized, only that they converge to 
normalized solutions as the iterations converge. Another fact not used in the 
standard Hartree-Fock methods, is that the Rayleigh quotient is an accurate 
means of estimating l ii since it may be stationary with respect to variations 6Pt (but 
not with respect to variations 8Pj , j # i.) Furthermore, numerical differentiation 
may be avoided by working entirely with the discretized problems. 

Let y, , m = I,..., N be the computed approximation to the solution of the 
differential equation y(r,,J. Define a column vector Y = ( y, , y2 ,..., JJ~)~. A 
numerical method such as Numerov’s method would define Y as a solution of a 
system of algebraic equations 

(A - EZ)Y = b, (3) 

where Z is the identity matrix and the elements of A and b depend on the functions 
f(r) and g(r), respectively.2 Multiplication of Eq. (3) by Yt results in the following 
expression for an energy estimate, 

E = (YtaY - Ytb)/YtY. (4) 

B Transformed HF equations are often solved numerically [6,7] with p = In r as independent 
variable and P(r)/r1/2 as dependent variable. In this case the system of algebraic equations has 
the form (A - &)Y = b and appropriate changes must be made to the equations derived later. 

#I/10/2-4 
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Once the functions f(r) and g(r) have been computed, an estimate of E can be 
determined with very little extra work provided the current estimate of the radial 
function is used in Eq. (4) instead of Y. This method of estimating E has been found 
most satisfactory when the radial functions are reasonably accurate. With screened 
hydrogenic functions as initial estimates, the Rayleigh quotient as given by Eq. (4) 
tends to be too small and a node-adjustment procedure is required. In fact as long 
as the radial functions are orthogonal, the Rayleigh quotient has always resulted 
in a lower bound (i.e., a one-electron energy that is too small.) This is not too 
surprising, however, one should remember that different radial functions generally 
are associated with different functionals and so the usual mathematical theory 
concerning bounds for excited states does not apply directly. Once a solution with 
the correct number of nodes has been obtained, an energy-adjustment procedure 
based on Cooley’s formula [9, 121 is most effective.3 When b = 0, the formula 
adjusts E to be an eigenvalue of A, but when b & 0, it adjusts E so that the solution 
has a given initial slope a, and thus assists in the search for an acceptable solution. 
For core electrons the exchange effect is relatively small or b w 0 and it was found 
that, even though a, may not be known accurately, convergence is improved if an 
attempt is made to find an acceptable solution for which j 0,/e ! < O.l/(Z ~ s,), 
where si is Hartree’s screening parameter [5]. 

The new method Ml for improving the estimated radial function can then be 
summarized as follows: 

1. Compute f(r) and g(r) for the radial function under consideration. 

2. Determine E from current estimates and the Rayleigh quotient. [Eq. (4)]. 

3. Solve the boundary-value problem for that E. 

4. Determine whether the solution is acceptable, if not, adjust E and repeat 3; 
if an acceptable solution cannot be found, orthogonalize all estimates and go 
back to 1. 

5. Form a new estimate of the radial function, 

P+l) = CP) + (1 - c) y//l y /( (normalized), 

where c = max(1 - 11 y 11, 1 - // y 11-l). 

3 For the nonhomogeneous E!.q. (3) the correct energy adjustment is 

cmtl = l + J&{(A - EZ) Y - b}p&P C J&Q) + O(P), 

where yH is a solution of the homogeneous equation with the same initial slope as y, uNJ is the 
point at which inward and outward integration are matched and {V], denotes the N&h com- 
ponent of the vector V. When p = In Y is the independent variable, the sum is replaced by 
I3 ~i”VPY P. 
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It was found that this method has greater stability than Hartree’s methods and that 
the simple algorithm for determining the acceleration factor given above was 
adequate in all the cases tried. 

Method Ml was used successfully to solve the HF equations for K 4d, Ca 4s4d, 
and SC 4s24d, all of which are unstable by the Griffin et al. definition. It also 
performed excellently for stable configurations such as He ls2s?S, the mutli- 
configuration approximation for C+2 2s2 + 2p2 IS, and a relatively large atom 
Fr 7s 2S (Z = 87). However, the results for Na 3p 2P and He lS were not nearly as 
satisfactory. 

Both of these cases have significant orthogonality constraints, and in the case 
of He 1~2s lS, the orthogonality constraint precludes a Z-l perturbation expansion 
[13]. The relationship of this fact with SCF iterations is not clear but it does suggest 
that the problem is special in some way. Indeed, the He Is2slS case has been one 
of the most difficult to solve accurately. 

The work of Mjolness and Ruppel [Ill shows that the solution of the HF 
equation which yields orthogonality is unique (except for sign). This suggests that 
Ml may not give enough attention to orthogonality and so another method was 
tested. 

Method M2 adjusts pairs of radial functions simultaneously so that each is 
normalized to first order, and the pair is orthogonal to first order. Let the pair of 
functions be PI(r) and P2(r) and let the discretized pair of equations be represented 
in matrix notation as 

‘%Yl - bl = QlYl + 92P2 3 

-42Y2 - b, = ~23, + l 22Y2 . 
(5) 

This form implies that e12P, , for example, is omitted from the definition of g(r) 
for the radial function PI(r). Multiplying the first of these equations by Y:, then 
Y,* we get two equations, 

YltAIYl - YItb = cIIYI”YI + e12YItP, , 

Y2tAlYl - Y2tb = e11Y2tYI + cIzY2tP2 , 
(6) 

which can be solved for 611 and cl2 using estimates of Y, and Y, , namely, Pi”’ and 
Pi”‘. Similar equations hold for E 21 and l 22 . Note that the inner product will not 
be zero for orthogonal functions since orthogonality is defined in terms of an 
integral, but it will be small. As a result the systems are well conditioned. 

Let 

ul = awaell , h = aylk2 , u, = aYzjae2, and v, = ay2/ac2,. 
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Then these vectors are solutions of the equations 

Estimates of orthogonal functions are then formed as 

Pl = Yl + 41Ul + 42v1, 

H, = Y, + AdJ2 +bV; , 

(7) 

(8) 

where the changes in the energy parameters are such that 

(i) each function is normalized to first order; 

(ii) the pair is orthogonal to first order; 

(iii) q1(E12 + Ad = q2(ezl + 0~~~). 

Here q1 , q2 are the occupation numbers for orbitals 1 and 2. This conditions is 
required since the pair of off-diagonal energy parameters is related to the same 
Lagrange multiplier, Xij = hji and cij = X,,/q, . These conditions result in the 
following system of equations: 

i 

(Yl > W/Ii Yl 

((I,” Y2) 
0 

II 
(Y* 9 & y2 II 

(Yl 5 Vl)/ll Yl II 
(y, 2 :),I, y, II 

41 
A~22 

w2 7 Yl) (V,P Y2) (vz > yd 4 
0 41 92 A621 

(9) 

where (Y, U) = sz y(r) u(r) dr, i.e., integration over the grid points at which the 
vectors Y and U are defined, and [I Y/j = (Y, Y)lj2. When q1 and q2 are nearly 
complete groups, this system of equations is ill conditioned and method M2 
should not be used. An example is the multiconfiguration problem 

C’21s22s2 + 1 s22p2 1s. 

Since the ls22p2 component is small, the expected occupation of the 2s orbital is 
very nearly 2 and the 1s and 2s radial equations are like those for complete groups. 
As already mentioned, such equations do not have unique solutions when the 
off-diagonal energy parameters are allowed to vary. 
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In order to faciliate a convenient search strategy for an acceptable solution for 
PI , say, an intermediate function 

PI* = Y, + de,*, u, + At-,*, v, 

is determined such that P,* is normalized to first order and orthogonal to first 
order to the current estimate of P, . The diagonal energy parameter is adjusted 
until an accpetable solution is found. If P, (or rj,) as determined by Eqs. (8) and 
(9) is not an acceptable solution, it is replaced by PI* (or P,*). 

Method M2 may then be summarized as follows: 

1. For each pair of orbitals, compute energy parameters and vectors, Y, 
U, V and hence P*; if P* is not acceptable adjust the diagonal energy parameter 
and repeat the calculation of Y, U, I’and P*. 

2. Solve the system of equations (9) and form P, and P, ; check if acceptable; 
if not, replace by PI* or P2*, repsectively. 

3. Form new estimates of Plk+‘) using accelerating factors defined as 

c = max(ol, 1 - 11 i5 11, 1 - II P [l-l), 

where 01 is an input parameter. It was found in this algorithm that more control 
over the accelerating factor was occasionally desirable. 

Method M2 was used successfully for a variety of cases including Na 3p 2P, 
He 1~2s 5, Ti 3d24s4d and 3d24s5d, and also Pr+2 4f 25f. No instabilities appeared 
in connection with Ti 3d24s5d. Much time had been spent previously, without 
success, in an attempt to obtain solutions for Pr+2 4f25f by standard methods. 
With method M2 the iterations converged surprisingly rapidly. 

IV. COMPARISON OF METHODS 

Obviously our method M2 involves more integrations of differential equations 
than Ml. However, both these methods require only one computation of the 
potential and exchange functions per improvement cycle. As already mentioned 
earlier, this may be the most time-consuming operation of all. In Table I some 
comparisons are made of these two methods both on the basis of efficiency and 
accuracy of results.4 In Cf2 lS and He %, orthogonality is not a significant factor 
and both methods achieve good accuracy, but Ml requires fewer calculations. For 
He 5’ and Na 2P, orthogonality is significant and though Ml is converging the 
accuracy is not as good as for M2, particularly for He %% 

*The MCHF program described in [9] modified to include deferred corrections [14] was 
used. 
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TABLE 1 

Comparison of Methods Ml and M2 

XCH - Number of times the potential and exchange functions are computed. 
NMRVS - Number of times a differential equation is integrated. 
GRANGE - Number of times off-diagonal energy parameters were computed. 
DPM - Maximum errors in a radial function due to lack of self-consistency. 
ORTHO - Maximum orthogonality integral 
RATIO - ratio of potential to kinetic energy (should be -2.0 exactly) 
E - total energy 

1. c+a2s2 + 2p*s 
Ml M2 

XCH 34 33 
NMRVS 70 99 
GRANGE 9 9 
DPM 0.0000005 o.oooooo2 
ORTHO o.ooooooO1 O.OOOOOOO1 
RATIO -2.oooooo1 -2.ooooool 
E -36.4809561 -36.4809562 

2. Hels2s3S 
Ml M2 

XCH 
NMRVS 
DPM 
ORTHO 
RATIO 
E 

3. He ls2srS 

XCH 
NMRVS 
GRANGE 
DPM 
ORTHO 
RATIO 
E 

4. Na 3pzP 

XCH 
NMRVS 
GRANGE 
DPM 
ORTHO 
RATIO 
E 

20 22 
42 69 
o.OOOOOO2 O.OOOOOO4 

-0.oooooo14 -0.oooooo13 
-2.oooooo1 -2.OOOOOOl 
-2.1742508 -2.1742508 

Ml M2 
94 38 

200 160 
21 5 
o.oooo992 o.OOOOOO3 

-0.00005887 o.OOOOOO05 
- 1.9997487 -2.0000002 
-2.1698718” -2.1698544 

Ml M2 
57 56 

120 220 
9 7 
o.ooooo64 O.OOOOOO8 
o.OOOOO507 0.00000000 

-2.0000005 -2.OOOOOO0 
-161.7864055 -161.7864085 

8 This value ignores the contribution to the total energy arising from a lack of orthogonality. 
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TABLE II 

Convergence of e4a,da for Ti 3d24d in the Fixed-Core Approximationa 

Iteration 
number 

Method Ml Method M2 

RQ ACC RQ ACC 

1 0.06086 0.11119 
2 0.10865 0.10865 
3 0.10661 0.10661 
4 0.10821 0.10821 
5 0.10860b 0.10860* 
6 0.10860 0.10860 
7 0.10867b 0.10867” 
8 0.10867 0.10867 
9 0.108686 0.108680 

10 0.10868 0.10868 

0.06086 -0.02146 
0.08436 0.30904 
0.09445 0.13355 
0.10584 0.10965 
0.10839 0.10878 
0.10865b 0.10872” 
0.10867 0.10870 
0.10868 0.10869 

0.10868 

L RQ - Rayleigh quotient; ACC - accepted energy, adjusted for normalization in M2. 
b At this stage the estimates were orthogonalized and off-diagonal energy parameters recomputed. 

TABLE III 

Convergence of f3D,8D for Na 3p 2P 

Iteration 
number Method Ml 

Method M2 
(a = 0.0) 

Standard 
(c = 0.7) 

1 0.14901 0.17062 0.20370 
2 0.21740 0.20553 0.21750 
3 0.20972 0.21474 0.20817 
4 0.21699 0.21836 0.21851 
5 0.204218 0.21959& 0.21139 
6 0.21561 0.21878 0.19879a 
7 0.21789 0.21908 0.22821 
8 0.21868& 0.21885& 0.20756 
9 0.21880 0.21896 0.22460 

10 0.21886& 0.21888 0.21196 

0.21891 0.21891 0.21891 

&At this stage the estimates were orthogonalized and the off-diagonal energy parameters 
recomputed. 
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The stability of these iterations is shown in Table II, by some results for 
Ti 3d24s4d with the 4d orbital in a fixed Ti+ core. In Ml the Rayleigh quotient is also 
the accepted energy after the first solution. In M2 the accepted energy, adjusted to 
first order for orthonormality, may differ radically from the Rayleigh-quotient 
value. Table II shows clearly that the adjusted energy from one iteration should 
not be used as an estimate in the next. 

Finally, in Table III the present methods are compared with the earlier standard 
method [9]. Na 3p 2P was selected as an example since it is a case where the standard 
method requires a relatively large accelerating parameter (c = 0.7) to damp out 
oscillations. These are observed most readily in the diagonal energy parameters 
which are tabulated in Table III. Oscillations such as those of iterations 6-10 of 
the standard method are typical and result in many SCF iterations being required 
for self-consistency. Also, if a smaller value of c is used, the iterations may diverge. 
Table III shows Ml to converge almost monotonically; M2 exhibits some oscil- 
lation but the amplitude is rapidly decreasing. 

V. CONCLUSIONS 

The results to date indicate that method Ml has remarkable stability properties 
and that, when orthogonality of intermediate results is crucial M2 may be adequate. 
Possibly these two methods should replace the “standard” methods referred to by 
Griffin et al. More experience will be required before the suggestion is adopted but 
the methods are most promising. 

One fact which method Ml made apparent was that orthonormalized screened 
hydrogenic functions yielded extremely poor Rayleigh-quotient estimates of 
acceptable energy parameters for large atomic systems such as Francium (2 = 87). 
The screening parameters used were Hartree [5] screening parameters based on the 
mean radius. It may be that Layzer’s [15] screening parameters which minimize 
the total energy are more appropriate. However, his theory does not produce 
orthogonal functions and requires the solution of a system of nonlinear algebraic 
equations. For large atomic systems it may be more efficient to first determine the 
HX solutions, orthogonalize and use these as estimates for the HF equations. 
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